

Developing The RumenDeveloping The Heifer

Tina Struyk & Zen Miller
Dairy & Livestock Agents
Sheboygan & Outagamie Counties

Northeast District Consion

"Start Them Right...Raise Them Right" Calf Management Meeting September 7-8, 2000

Question...

Is a new born calf a ruminant or a monogastric
animal?

She is a *monogastric* animal.

Calf versus Adult

Rumen

Calf

0.5: 1 Volume Ratio

Rumen: Abomasum

Adult

10:1 Volume Ratio

Rumen: Abomasum

Pre-Ruminant Phase

- O to 3 weeks of age.
- The calf's rumen is non-functional.
- The abomasum, the main compartment of digestion, makes up 70% of all compartments.
- May last longer if dry feed is not offered.

Development of the Digestive System

- Occurs during the first 4-8 weeks of a calf's life.
- Development is <u>chemical not physical</u>.
- Prior to weaning, most of energy and amino acid needs of calf derived from intestinal digestion of milk.
- When calf consumes water and starter, bacterial fermentation is initiated.

Bacterial Fermentation

- Bacterial fermentation produces large amounts of volatile fatty acids:
 - Acetate
 - Butyrate
 - Propionate
- Production of VFA responsible for rapid rumen tissue development.

Why chemical and not physical?

- Research results show rumen development stimulated by VFA'snot "scratch factor".
- Milk, hay and grain fermented to produce VFA.
- Sponges did not contribute VFA for rumen developmentadded "scratch".

Material	Effect on Rumen Development
Milk	++
VFA Salts	
Acetate	++
Propionate	+++
Butyrate	++++
Grain	+++
Hay	++
Plastic Sponges	-
Inert Particles	

Source: Calf Notes. J. Quigley. 1999.

Inside the

Proving umen Water S **Provid** Starc e Grain h Fermentation **VFA Propionate Butyrate** Acetate

Absorption of VFA through epithileum stimulates rumen development

Transition Phase

- 4 to 8 weeks of age.
- Rumen begins to take over main digestion of feed.
- Growth of papillae and rumen is stimulated by dry feed intake.
- Will continue as long as milk is fed.

Veal Calf's Stomach

18 pounds
Rumen 18 x 11"
Abomasum 12 x 5"

Ruminant Phase

- Over 8 weeks of age.
- Functional ruminant.
- Dry feed is the sole source of feed.
- Rumen makes up 85% of all compartments.

Dairy Calf's Stomach

70 pounds
Rumen 24 x 22"
Abomasum 16 x 4"

Ingredients to Initiate Rumen Development

- Bacteria
- Liquid in the rumen
- Muscular movement
- Absorptive ability of the tissue
- Availability of feed stuff in the rumen

Bacteria

- Bacteria are non-existent in the rumen at the time a calf is born.
- Bacteria are introduced into the rumen at the time the calf begins to consume calf starter.
- Bacteria help with the digestion process.
- End products of digestion causes the changes in the rumen.

Liquid in the Rumen

- Offering water from 3 days after birth has shown to:
 - Increase weight gain.
 - Promote starter intake.
 - Reduce incidences of scours.

Source: Kertz, 1984.

- Liquid in rumen provides environment for rapid bacterial growth.
- Milk does not provide sufficient amounts of liquid because it by-passes the rumen.
- However, even small amounts of liquid entering the rumen promote bacterial growth.

Muscular Movement

- Muscular movement encourages mixing feedstuffs in the rumen and necessary for passage through the rumen.
- Types of movement:
 - Rumen pressure
 - Rumen contraction
 - Cud chewing
- Little activity at birth.
- Contractions increase as feed intake increases.

Absorption

- Two layers of the rumen:
 - Muscular (responsible for contractions)
 - Epithelium (responsible for absorption)
- At birth, epithelium layer does not have absorptive ability.
- VFA absorption stimulates epithelium development, which increases surface area.
- Epithelium elongates into "finger-like projections" called papillae.

A Look at the Papillae

Heads or Tails?

Availability of feedstuff

- Offer clean, fresh calf starter at Day Three.
- Should met NRC recommendations.
- Palatability

Nutrient Recommendations
For Dairy Calves

Nutrient	Amount
% DM	18.0
% Fat	3.0
% TDN	80.0
Mcal Energy	3.11
% Ca	0.60
% P	0.40
Vitamin A (IU/kg)	2200
Vitamin D (IU/kg)	300
Vitamin E (IU/kg)	25

What about hay?

- Digestion of hay provides acetic acid.
- Acetic acid is less crucial for rumen development.
- Hay provides a "scratch factor" to promote healthy growth of papillae.
- Hay should be offered
 0-4 weeks <u>after</u> weaning.

Conclusion

- Newborn calf is a monogastric with a non-functional rumen.
- Milk by-passes rumen.
- Rumen development is chemical.
- Free choice water & calf starter needed.
- Feed hay after weaning.

Start **'Em** Right... Raise

2000 Calf Management Meeting