Dairy Cattle Feeding-Related Issues With 2009 Corn Crop

Randy Shaver & Pat Hoffman Dairy Science Department University of Wisconsin - Madison

UNIVERSITY OF WISCONSIN - MADISON www.wisc.edu/dysci

Harvest & Storage Issues

>Wet Corn

> Mold/Mycotoxins

Harvest & Storage Options

>Snaplage (SNG)

>High-Moisture Shelled Corn (HMSC)

> Dry Shelled Corn (DSC)

Table 1. High Moisture Corn Storage in Conventional, Bunker,Bag, and Oxygen Limiting Silos

Conventional Top Unloading Silos, Bunkers, and Silo BagsCorn Kernel Moisture, %MinimumDesiredMaximumEar Corn2632-3640Shelled Corn2628-3236

Bottom Unloading Oxygen Limiting Silos									
Corn Kernel Moisture, %									
	Minimum Desired Maximum								
Ear corn-rolled*	26	28-32	36						
Shelled corn	24	26-28	32						

*OL Silo with Forage Unloader

Source: Rankin, 2009

High-Moisture Corn Storage Options

Lactobacillus buchneri (LBUC) or combination inoculant

- > Propionic Acid (PROP)
- > Mixed Organic Acid (MOA) Product
- > Anhydrous Ammonia or Aqua-Ammonia

Table 2. Recommended application rates of propionic acid to preserve high moisture corn

Corn moisture %	Lbs. propionic acid to apply per 1000 lbs. wet corn ¹							
	Months corn to be stored							
_	6	6 9 12						
20	3.3 - 5.0	4.0 - 6.0	5.0 – 7.5					
25	5.0 - 6.5	6.0 - 8.5	7.5 – 10.0					
30	6.5 - 8.5	8.5 - 11.0	10.0 – 12.5					
35-40	8.5 - 10.5	11.0 - 14.0	12.5 – 15.0					
¹ Use lower rate for w	ell-mixed corn and high	ner rate if acid and grain	cannot be well-mixed.					

Source: Rankin, 2009

Harvest & Storage Comments

- Advantage of DSC is mold/yeast shut down, can exclude fines, & can dilute easily
- > Advantage of SNG was could get it off wetter

> HMSC is the intermediate solution

- Leave the cob in field!
- 35% kernel moisture less risky than 40%, i.e. yeast/ethanol issues
- Relying on low pH (inoculant can help) & oxygen exclusion
- If wet HMSC/yeast of more concern than mold, then LBUC or MOA likley to be more effective than PROP
- Plan storage so that worst corn can be fed before spring/summer
- Coarse roll (2,500 micron MPS) best on wet HMSC

Potential Feeding Issues

>DSC

- Reduced test weight
- Mold/Mycotoxins

Figure 1. Wet and dry test weights for grain harvested at soft dough through mature kernel stages and dried to 15.5% moisture at 80 or 120 degrees (Hicks, 2004)

Source: Rankin, 2009

DSC Feeding Considerations

- > <50 lb./bu. test weight, discount normal DSC energy value by 5%
- > Feed by weight not volume
- Test for nutrient composition including starch content, have labs estimate the energy value using summative energy equations, & adjust ration
- > Test for mycotoxins
 - Dilute, use binders, target groups, discard as necessary

Potential Feeding Issues

>HMSC

- Reduced starch content
- Fast rate & high extent of ruminal starch digestion
- Yeast/ethanol fermentation
- Poor aerobic stability during feed-out
- Mold/Mycotoxins

Potential Feeding Issues

> SNG

- Reduced starch content
- Increased NDF content
- Increased variability in starch, NDF & energy contents
- Fast rate & high extent of ruminal starch digestion
- Yeast/ethanol fermentation
- Poor aerobic stability during feed-out
- Mold/Mycotoxins

HMSC & SNG Diagnostics

≻Testing

- Nutrient composition including starch & NDF contents
- Labs estimate energy value using summative energy equations
- Particle size
- Fermentation profile
- Mycotoxins

HMSC & SNG Feeding Considerations

- Adjust ration based on nutrient composition, energy value & particle size
 - May require partial substitution with DSC, but feed-out rate must be adequate
 - May require using more dietary buffer
 - May require using byproduct fiber sources
- Determine & monitor corn DM content to adjust as-fed corn feeding rate, so that desired amount of DM fed
- > If bunk stability poor, may require back-end use of TMR preservative products
- Depending on results of mycotoxin tests, dilute, use binder, target groups, discard as necessary

UW Feed Grain Evaluation System

SOIL and FORAGE ANALYSIS LABORATORY

2611 East 29th Street, Marshfield, WI 54449 Phone 715-387-2523 ext 4Fax 715-387-1723

Acct # Date

1 3/1/2009

UW-Feed Grain Evaluation System	
	Comments
<u>Grain Type</u> Dry or HM Corn Small Grain	Example High Moisture Grain
Sorghum Milo Steam Flaked Grain	
Lab Number 1 Sample Description	

Item	Abbrev	Unit	Result	Method ¹
Dry Matter	DM	% as fed	70.0	wc
Moisture		% as fed	30.0	с
Protein Fractions				
Crude Protein	СР	% of DM	9.1	wc
Prolamin Protein		% of DM	2.3	WC
Prolamin Protein		% of Starch	3.3	WC
Fiber Fractions				
Neutral Detergent Fiber	aNDF	% of DM	8.4	wc
Starch				
Starch		% of DM	68.9	wc
Mean Particle Size	MPS	microns	2000	WC
Processing Classification			Med-Coarse G	rind
Relative Grain Quality	RGQ		174	С
Carbohydrates and Fats				
Non Fiber Carbohydrate	NFC	% of DM	76.3	с
Nonstarch NFC		% of DM	7.4	С
Fat		% of DM	4.2	WC
Energy Calculations:				
Total Digestible Nutrients, 1X	TDN	% of DM	89.9	с
Net Energy Lactation, 3X	NEL	Mcals/lb	0.91	С
Net Energy Maintenance	NE _M	Mcals/lb	0.98	с
Net Energy Gain	NE _G	Mcals/lb	0.67	с
Metabolizable Energy, 3X	ME	Mcals/lb	1.42	с

Macro Minerals	s, % of DM		Micro Minerals,	, % of DM	
Phosphorus	Р	wc	Iron	Fe	wc
Calcium	Ca	wc	Manganese	Mn	wc
Potassium	κ	wc	Zinc	Zn	wc
Magnesium	Mg	wc	Copper	Cu	wc
Sodium	Na	WC			
Chloride	CI	wc	Ash	2.0	wc
Sulfur	s	wc			

¹ WC = wet chemistry NIR = near infrared spectroscopy NR = not requested NA = not available C = calculated

Corn Ear Molds and Mycotoxins in the Field

Paul Esker

Field Crops Extension Plant Pathologist UW-Madison

Phone: 608-890-1999 Email: <u>esker@wisc.edu</u> <u>http://www.uwex.edu/ces/croppathology</u> <u>http://www.plantpath.wisc.edu/soyhealth</u> <u>http://thesoyreport.blogspot.com</u>

Fusarium Ear Rot

- Fusarium moniliforme, F. proliferatum, F. subglutinans
- Symptoms variable depends on genotype, environment, disease severity
- Most common: individual or groups of infected kernels scattered randomly on ear
- Whitish pink to lavender growth on kernels
- Growth frequently found at tip of ear where damage may have occurred
- Asymptomatic kernels

Phone: 608-890-1999 Email: <u>esker@wisc.edu</u>

Cladosporium Ear Rot

- Cladosporium herbarum, C. cladosporoides
- Dark, greenish black, blotched, or streaked kernels
- Growth looks similar to Trichoderma (requires microscopic examination to distinguish)
- Scattered across ear
- When ear completely colonized, ears are dark and lightweight
- Often associated with insect injury and frost damage

Phone: 608-890-1999 Email: <u>esker@wisc.edu</u>

Gibberella Ear Rot

- Gibberella zeae
- Same organism that causes Fusarium head blight in wheat
- Also called red rot
- Reddish mold that appears at tip and grows down the ear
- If infection early, entire ear may rot and have pinkish mycelium – husks will adhere tightly to ear
- Typically rare to see entire ear colonized

Diplodia Ear Rot

- Stenocarpella maydis
- Widespread reports from states south of WI
- Thick, white mold that usually starts at base of ear infect kernels appear "glued" to husk
- Ear may be shrunken, lightweight, and turn grayish brown
- Black pycnidia can be seen on kernels, cobs, husks, and rotted stalks

Trichoderma Ear Rot

- Trichoderma viride
- Dark green to dark bluish green fungal growth
- On and between kernels
- Often covers entire ear
- Associated with injury to developing ear

Penicillium Ear Rot

- Penicillium oxalicum
- Infection typically occurs where ears damaged
- Powdery green or blue fungal growth on and between kernels
- Most often at tip
- Infected kernels can become streaked or bleached
- Grain stored at high moisture may result in "blue eye" – blue discoloration of embryo
- In silage, *P. roqueforti* is a common fungus (different)

Phone: 608-890-1999 Email: <u>esker@wisc.edu</u>

Primary Toxigenic Molds and Mycotoxins * Those with adsorbent data							
<u>Fusarium</u> *Deoxynivalenol *Zearalenone *T-2 Toxin *Fumonisin *Moniliformin Nivalenol *Diacetoxyscirpenol Butenolide	<u>Aspergillus</u> *Aflatoxin *Ochratoxin *Sterigmatocystin Fumitremorgens Fumigaclavines Fumigaclavines Fumitoxins *Cyclopiazonoic Acid Gliotoxin	Penicillium *Ochratoxin PR Toxin Patulin Penicillic Acid Citrinin Penetrem *Cyclopiazonic acid					
Neosolaniol *Fusaric Acid Fusarochromanone Wortmannin	Mold Species Secondary Metab Mycotoxins	Known Postulated 1,100 1,500,000 oolites 3,200 3,000,000 >300 30,000					
<u>Stachybotrys</u> <u>Lupinos</u> Stachybotryotoxin	sis <u>Claviceps</u> & Fesc *Ergots	ue Alkaloids Loco Weed *Swainsonine					

50

Ŵ

College of Agricultural Sciences • Cooperative Extension

http://www.das.psu.edu/researchextension/dairy/nutrition/pdf/mold.pdf

Mold and mycotoxin problems in livestock feeding

Richard S. Adams, Kenneth B. Kephart, Virginia A. Ishler, Lawrence J. Hutchinson¹, and Gregory W. Roth²

¹Department of Veterinary Science ²Department of Agronomy

ľ

凾

Sþ

Ø

۰

Ξ

÷

Table 4. Guide for interpretation of mycotoxin tests in livestock feeds					
	Concerna	P	otentially Harmful	b	
Mycotoxin	Level	Cattle	Swine	Horse	
Aflatoxin ^c	ppb	ррь	ррь		
Major ingredient					
Air-dried ^d	20	20-300	20-100		
Dry Matter	22	22-333	22-111		
TRDM ^e	20-40	20-132	20-102		
Zearalenone Maior ingredient	ppm	ppm	ppm		
Air-dried	.50	5.0-9.0	1.0-5.0		
Dry matter	.56	5.6-10.0	1.1-5.6		
TRDM ^a	.56	3.9-7.0	.6-3.9		
DON/Deoxynivalenol Major ingredient	ppm	ppm	ppm		
Air-dried	.50	4.5-11.0	.7-1.3		
Dry matter	.56	5.0-12.0	.8-1.4		
TRDM	.56	2.5-6.0	.6-1.0		
DAS, ppm					
TRDM ^a	.25	.7-1.5	.4-1.0		
T-2, ppm					
TRDM	.25	.7-1.5	.7-1.5		
HT-2, ppm					
TRDM	.25	1.5-3.0 ^f	1.5-3.0 ^f		
Ochratoxin, ppm					
TRDM ^d	.25	5.0-9.0 ^f	.7 -1 .5 ^f		
Fumonisin, ppm					
Major ingredient					
Air-dried	1.0-3.0	6.0-10.0	10.0	6.0-10	
Dry matter	1.1-3.3	6.7-11.1	11.1	6.7-11	

^a Level indicating possible favorable conditions for mycotoxins and probable need for further testing of all feeds or the TMR. Pending further tests, negative

Table 2-16. Directory of mycotoxin laboratories

The following laboratories can offer qualitative and quantitative analysis for mycotoxins that include but are not limited to aflatoxins, DAS, fumonisin, ochratoxins, T-2, vomitoxin, and zearalenone. Contact individual laboratories directly for information about prices and services, sample submission, and other details.

Covance Laboratories 3305 Kinsman Boulevard Madison, WI 53707 (608) 241-4471

Centralia Animal Disease Laboratory Illinois Department of Agriculture 9732 Shattuc Road Centralia, IL 62801-5858 (618) 532-6701

Dairyland Laboratories 217 East Main Street Arcadia, WI 54612 (608) 323-2123 Midwest Laboratories 13611 B Street Omaha, NE 68144 (402) 334-7770

Romer Labs, Inc. Attn: Analytical Services 1301 Stylemaster Drive Union, MO 63084-1156 (636) 583-8600

Veterinary Diagnostic Laboratory North Dakota State University 174 Van ES Hall Fargo, ND 58105 (701) 231-8307 Veterinary Diagnostic Labs Iowa State University 1600 South 16th Street Ames, IA 50011 (515) 294-1950

Veterinary Medical Diagnostic Laboratory 1600 East Rollins Columbia, MO 65211 (573) 882-6811

Woodson-Tenent Laboratories 3507 Delaware Avenue P.O. Box 1292 Des Moines, IA 50313 (515) 265-1461

Source: Esker, UW, 2009

Additional Commercial Feed Labs Offering Mycotoxin Testing

Rock River Laboratory, Inc. 710 Commerce Drive P. O. Box 169 Watertown, WI 53094-0169 920.261.0446 www.rockriverlab.com

Dairy One Forage Lab Services 730 Warren Rd., Ithaca, NY 14850 www.dairyone.com

AgSource Soil and Forage Laboratory 106 North Cecil Street Bonduel, WI 54107 agsource.crinet.com

Cumberland Valley Analytical Services, Inc. P. O. Box 669 Maugansville, MD 21767 www.foragelab.com

http://www.ces.ncsu.edu/disaster/drought/Mycotoxin-Review.pdf

Mold and Mycotoxin Issues in Dairy Cattle: Effects, Prevention and Treatment

L. W. Whitlow and W. M. Hagler, Jr.

Lon_Whitlow@ncsu.edu, Box 7621 North Carolina State University, Raleigh, NC 27695

Summary

頔

U

- Molds are filamentous (fuzzy or dusty appearing) fungi that occur commonly in feedstuffs, including roughages and concentrates.
- Molds can infect dairy cattle causing a disease referred to as mycosis. A mycosis is most likely when cows
 may be immune suppressed during stressful periods. A mycosis can occur in various locations such as the
 lungs, mammary gland, uterus or intestine. An intestinal infection may result in hemorrhagic bowel.
- Molds may also affect cattle by producing poisons called mycotoxins that affect animals when they
 consume contaminated feeds resulting in a mycotoxicosis.
- Molds are present throughout the environment and therefore, mycotoxins can be formed on crops in the field, during harvest, or during storage, processing, or feeding.
- Mold spores are in the soil and in plant debris lying ready to infect the growing plant in the field.
- Mold growth and the production of mycotoxins are usually associated with extremes in weather conditions

Mycotoxin Binding Agents Source: Hoffman, UW, 2009

- Activated carbon
- Aluminosilicates
- clay, bentonite, zeolite
- Complex indigestible carbos cellulose, yeast cell walls, glucomannans
- Synthetic polymers
- Limited Data
- Positive Field Experience
- Do not Universally Bind All Mycotoxins

	Alumniosilicate Binding Capacity			
	Product A	Product B		
Aflatoxin	100	89		
DON	3	14		

% Mycotoxin absorbed in aqueous solution

Examples of Mycotoxin Adsorbents

Determination of Mycotoxin Adsorption

Effect of pH on in vitro adsorption of mycotoxins by a clay

Toxin	pH 3	pH 7	<u>pH 10.1</u>
	(%	% Adsorption	1)
Aflatoxin B1	99.5	82.2	97.0
Deoxynivalenol	73.5	30.8	20.6
Zearalenone	34.8	42.8	100.0
T-2 toxin	20.2	25.2	74.4
Fumonisin B1	94.4	0	0
			Hagler, NCSU

Clearance and Appearance of Aflatoxin in Milk of Dairy Cows Associated With Consumption of Aflatoxin-Contaminated Corn in Diets With and Without Addition of 1% Clay Adsorbents

Toxin	ppm	Adsorbent	Animal	Response	Effective	Reference
AF	2	0.05 & 0.1% of prod	Broilers	Improved gain and hematological parameters	Y	Basmacioglu et al., 2005
AF	2	0.051% of product	Broilers	Protection of organ toxicity	Y	Karaman et al, 2005
AF	1	0.2% of product	Broliers	Improved immunity, Not gain	Y	Santin et al, 2003
AF	5	0.1% yeast	Broliers	Improved BW & organ wt.	Y	Stanley et al., 1993
AF	2	0.1% of product	Chicken	Reduced effects	Y	Girish & Devegowda 2004
AF	2.5	0.1% Yeast	Quail	Growth increase 40%	Y	Parlat et al., 2001
AF	5	S. cerev.	Quail	Improv. gain, intake, F/G, egg prod. & egg wt.	Y	Yildiz et al., 2004
AF	N/A	glucan product	Cows	No reduction of AF in milk	N	Bhuthgen & Schwertfeger, 2000
AF	0.055	0.05% of product	Cows	Reduced milk AF by 60%	Y	Diaz et al., 2004
AF	0.170	0.5% of product	Cows	No reduction of AF in milk	N	Stroud et al., 2006

THE A CHOIL 22 1 01 a

Effect o	Amount	Adverburgt	Animal	Pomono	Effective	Reference		
Mycotoxin	ppm	Ausorbeat	Ammai	Response	Effective	Meterence		
Fumonisin	200	Glucomannan	Mink	No effect	N	Bursian et al., 2004		
Moniliformin	20	Glucomannan	Mink	No effect	N	Bursian et al., 2004		
T-2 toxin	1	0.1% of product	Chicken	Reduced effects	Y	Girish & Devegowda, 2004		
ZEN	30	Glucomannan	Mink	No effect	N	Bursian et al., 2004		
Ergot alkaloid	3	0.5% Yeast	Broilers	Improved BW, intake, prevented liver enlargement	Y	Deo, et al., 1999		
Ergot alkaloid	3	0.5% of product	Broilers	Improved BW, intake, prevented liver enlargement	Y	Deo, et al., 1999		
Aurofusarin	26.4	0.1% of product	Quail	Good protection	Y	Dvorska et al., 2003		
Ochratoxin	2.5 - 10	Glucomannan	Mink	No effect	N	Bursian et al., 2004		
Ochratoxin	0.5	0.1% of product	Chicken	No protection	N	Santin et al., 2002		
Ochratoxin	N/A	yeast	Pigs	No effect	N	Bauer, 1994		
Positives:	Positives: 0/1 FB, 0/1 MON, 1/1 T-2, 0/1 ZEN, 2/2 EG, 1/1 AU, 0/3 OA, 4/10 Overall							

Summary (Positive Responses/Trial Observations)								
<u>Mycotoxin</u>	<u>Carbon</u>	Glucan	<u>Clay</u>	Zeolite	<u>Chol</u>	<u>PVP</u>	<u>Bacteria</u>	Clay/Enzy
AF	6/8	7/9	35/35	11/16		1/2		38 - 1 3 Mor
STG			1/1					
CPA			0/2	0/1				
DON			0/1					
ZEN	1/1	0/1	1/2	2/3				
T-2	3/3	1/1	0/5	0/1				
DAS			0/1					1/1
FB	0/1	0/1	0/1		1/1			
MON		0/1						
AU		1/1						
"Fusarium"		5/9	1/2	0/1				0/2
AF + "Fusar."		2/2	1/1				1/1	
OA	1/2	0/3	0/5	0/1	0/1			
OA + AF			0/1					
Ergot		2/2	2/2	2/2	Resp	onse	> 1/2 in	Yellow
SW			0/1		P			

Summary - Evaluation of Mycotoxin Adsorbents In Vivo

Responses to adsorbents correlate across species Some adsorbents are mycotoxin specific No adsorbent has been effective across all mycotoxins Adsorption varies within adsorbent types Data are most abundant for silicates...and with aflatoxin Little data for inorganic polymers: PVP and cholysteramine Research on bacterial adsorption is beginning & promising Other methods are receiving attention, i.e., enzymes, ... but are not yet proven Dealing with High Yeast Levels in High Moisture Corn and Corn Silage

Matt Glewen, Limin Kung, R.D. Shaver, and P.C. Hoffman

Potential Situation

• Cool growing season and resulting late harvest create conditions that are highly unfavorable for bacteria species responsible for the fermentation and preservation of highmoisture corn and corn silage

 Resulting fermentation may be slow thereby providing an excellent environment for various yeast species which include the nonfermenting species Cryptococcus, Thadotorala, and Sporabolomyces as well as Candida and Hansenula which can metabolize lactic acid

Mechanism

- High endemic yeast populations are ensiled
- During slow fermentations, moderate growth of yeast occurs until oxygen is expired in the silage
- At feedout, yeasts are re-exposed to oxygen
- Yeast growth becomes exponential
- Lactic acid is consumed
- Heating occurs
- Silage acids are volatized
- Silage pH rises
- Molds with low oxygen requirements (Mucor) invade the silage
- Aerobic instability

Yeast Count Interpretations

Aerobic stability deceases as yeast counts increase

• Well-preserved feed will normally have yeast counts less than 10,000 cfu/g. At this level, feed will be aerobically stable for 120-140 hours

• At 1 million cfu/g, aerobic stability will decrease to 40 hours

• Yeast counts of 25 - 50 million can occur in inadequately fermented feed. Due to the fact that oxygen can penetrate the silage face up to 2 feet during feedout, removal rates are seldom great enough to stay ahead of exponential yeast growth

Possible Solutions at Feedout

- Discontinue feeding aerobically unstable feed during warm weather and concentrate feedout in colder weather
- The feedout face should be a smooth surface that is perpendicular to the floor and sides in the bunker or pile
- Remove 6 to 12 inches per day or more in cold months; 12 to 18 inches per day or more in warm months
- Minimize the time between silage or high moisture removal and feeding
- Discard any visibly moldy feed
- If free of mycotoxins, consider feeding the feed to as many livestock groups as possible at higher inclusion rates in the diet to increase silo feedout rates
- Consider using TMR preservative products

Visit UW Extension Dairy Cattle Nutrition Website http://www.uwex.edu/ces/dairynutrition/

Cooperative Extension Extension **Dairy Cattle Nutrition UW-Extension** <u>Extension</u> Contact Search Home About Conferences Welcome to Dairy Cattle Nutrition UW-Extension Presentations Dr. Randy Shaver Publications Professor - UW Madison & The Dairy Cattle Nutrition UW-Extension site is designed to provide research-based information for the public Extension Dairy Nutritionist Spreadsheets seeking resources on applied aspects of the nutrition of dairy cattle. 280 Animal Sciences Building 1 inks 1675 Observatory Drive Web Site Highlights Madison, WI 53706-1284 Phone: (608) 263-3491 nload a copy of the free Fax: (608) 263-9412 Adobe Acrobat Reader to viev rdshaver@wisc.edu and print information provided Biographical Information Dairy Team News from the University of Wisconsin Reader • 2009 Four-State Dairy Nutrition & Management Conference Proceedings Pat Hoffman Professor - UW Extension DEPAR UW Feed Grain Evaluation System Marshfield Ag Research Station 8396 Yellowstone Drive, Marshfield, WI 54449 • Particular of the standard st digestibility in ruminants (Josh Larson and Pat Hoffman - JDS paper) Phone: (715) 387-2523 Fax: (715) 387-1723 • 🖄 Corn Biochemistry: Factors related to starch digestibility in ruminants (Pat Hoffman and Randy Shaver pchoffma@wisc.edu Conference paper) Corn Biochemistry: Factors related to starch digestibility in ruminants (Pat Hoffman and Randy Shaver **Biographical Information** WT OF DAIP slide set) A guide to understanding prolamins (Pat Hoffman and Randy Shaver) W Feed Grain Evaluation System (Pat Hoffman and Randy Shaver) Belative Grain Quality - RGQ (Pat Hoffman and Randy Shaver) **EXCELLENCE IN** Spreadsheets **EDUCATION AND DISCOVERY** • 🛛 MILK2006 Corn Silage: Calculates TDN-1x, NEL-3x, Milk per ton, and Milk per acre **UNIVERSITY OF WISCONSIN - MADISON** EDUCATION AND DISCOVERY Publications www.wisc.edu/dysci Benchmarking forage nutrient composition and digestibility East State Programs in High Producing Dairy Herds THE UNIVERSITY Presentations Benchmarking forage nutrient composition and digestibility

MADISON

• 🖄 Diets fed in selected WI high-producing dairy herds

© 2009 Board of Regents of the University of Wisconsin System, doing business as the Division of Cooperative Extension of the University of Wisconsin-Extension. If you have any questions regarding this site's contents, trouble accessing any information on this site, require this information in an alternative format or would like to request a reasonable accommodation because of a disability email: rdshaver@wisc edu